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Recently it has been shown that a strongly interacting colloidal mixture consisting of oppositely driven
particles undergoes a nonequilibrium transition towards lane formation provided the driving strength exceeds
a threshold value. We predict here a reentrance effect in lane formation: for fixed high driving force and
increasing particle densities, there is first a transition towards lane formation which is followed by another
transition back to a state with no lanes. Our result is obtained both by Brownian dynamics computer simula-
tions and by a phenomenological dynamical density functional theory.
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If a binary colloidal mixture is exposed to a constant ex-
ternal force which acts differently on the two particle spe-
cies, the system achieves a nonequilibrium steady state in
general [1–3]. For strong external forces, particles of the
same species, which are driven alike, align behind each other
[4,5]. This “slip-stream” effect results in macroscopic lanes
spanning the whole system size provided a threshold in the
strength of the driving force is exceeded. Lane formation can
be classified as a nonequilibrium first-order phase transition.
The transition towards lane formation is general and occurs
also in systems different from colloids, such as dusty plasma
particles [6], ions migrating within two-dimensional mem-
branes[7], granular matter[8,9], and collective dynamics of
pedestrians in pedestrian zones[10].

A quantitative investigation of lane formation has been
performed by Brownian dynamics computer simulations of
driven two-component colloidal mixture in two and three
dimensions[4]. These simulation studies have been extended
to asymmetric mixtures[11], relatively tilted driving fields
acting on the different particle species[12], and crystalline
mixtures driven against each other[12]. Lane formation also
occurs as a transient state during the two-dimensional
Rayleigh-Taylor interfacial instability provided the interfa-
cial tensions are small with respect to the driving force[13].
Moreover, a theory for the transition towards lane formation
was recently proposed by us[14]. It is based on dynamical
density functional theory, which takes the repulsive interpar-
ticle interaction explicitly into account, and is supplemented
by a phenomenological version of the transversal particle
current induced by the external drive. An instability from a
homogeneous state towards a laned state was predicted but
the actual predictions for the threshold of the external drive
were significantly smaller than in the simulation[4].

The previous studies in Refs.[4,14] were restricted to
high densities of the colloidal particles. In this brief report,
we illustrate our observations on the low density regime as
well to bring out the entire topology of the laning phase
diagram. We show that there is areentrant effectin driven

colloidal mixtures. Reentrance occurs as a function of par-
ticle density at fixed strength of the external drive. For in-
creasing density and sufficiently high driving force, we find
the sequence: no lanes/lanes/no lanes, i.e., lane formation
occurs only in a finite density window. There is a simple
intuitive reason for this reentrance effect: for very small den-
sities, the particles are almost noninteracting. Hence, the
drive will not induce any instability so that the system will
stay mixed for entropy reasons. For intermediate densities,
there is an interaction and the strong drive will put particles
into lanes. For very high densities, on the other hand, the
interaction is very strong exceeding the external drive so that
the external drive will again not induce lane formation. Our
results are based on Brownian dynamics computer simula-
tions. We also adopt the dynamical density functional theory
of Ref. [14]. However, we improve the phenomenological
expression for the transverse current in this theory and show
that the modified theory captures the reentrant feature and
brings about much better agreement with the simulation data
for the location of the laning transition.

The Brownian dynamics simulation model in this work is
the same as used in our previous studies[4,14]. Let us briefly
summarize the essential features: we consider an equimolar
binary colloidal system with 2N=500 particles in a square
cell of length,, having periodic boundary conditions with a
fixed total number densityr0=2N/,2=2r+

0=2r−
0 and a fixed

temperatureT. The effective pair potential between two col-
loidal particles at a separationr is modeled as a screened
Coulomb interaction[2]:

Vsrd = V0 s expf− ksr − sd/sg/r , s1d

whereV0 is an energy scale,s is the length scale, defining
the range of the interaction, andk the reduced inverse
screening length. In this work the energy is chosen to be
V0=10kBT, wherekBT is the thermal energy, andk=4.0. The
parameters are the same for the interaction between particles
of both types, and also for the cross interaction. The dynam-
ics of the colloids is completely overdamped Brownian mo-
tion. We neglect hydrodynamic interactions. This is a reason-
able approximation if the physical volume fraction of the
colloidal suspensions is small. For charged suspensions this*Electronic address: jd319@cam.ac.uk
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condition can be fulfilled even for strongly interacting dense
systems where we find the reentrant behavior since the range
of the interaction is typically much larger than the size of the
colloidal particles. The constant external fieldFi si = + ,−d is
acting iny direction of the simulation cell, shown in Fig. 1,
and drives particles of different types in opposite directions:
F+=F.0 for s+d particles andF−=−F for s−d particles. We
denote the dimensionless drive parameter byFp=Fs /kBT. In
order to detect lane formation we apply the order parameter
f which is defined in Ref.[4]. It is zero, when the system is
isotropic, and one, when the colloids are perfectly ordered in
lanes throughout the whole system, each lane containing
only particles of the same type. We could show in Ref.[4],

that f, averaged over many steady-state configurations, in-
creases rapidly to values of about one when critical threshold
value of the applied field,Fc is exceeded, indicating a non-
equilibrium phase transition to the laning state. We defineFc
to be the external field for whichf=0.5, implying that in
average half of the particles in the system are ordered in well
defined lanes. Results for the critical forceFc versus the total
density are plotted in Fig. 2, showing a nonmonotonic be-
havior: for fixed high driving force(for instanceFp=70 as
indicated by an arrow in Fig. 2) and increasing particle den-
sities, there is first a transition towards lane formation which
is followed by another transition back to a state with no
lanes. Corresponding snapshots for the three states at three
different densitiesr0s2=0.07,0.20,0.70 for a fixed force
Fp=70 are shown in Figs. 1(a)–1(c). The average order pa-
rameter for these parameters isf=0.11,0.80,0.05, respec-
tively. At the highest density[Fig. 1(c)], there a still remnant
of laning visible but there are also regions of mutual jam-
ming which destroy perfect lane formation. Hence, there are
qualitative differences in the no-lane phase at small and high
densities.

A dynamical density functional theory as described in
Ref. [14] accounts for the stabilization of the inhomogeneous
steady states beyond the critical drive. The density fields
r±sr ,td obey the equation of motion which has the form of
continuity equation:

] r±sr,td
] t

= − ¹ · fj±
s1dsr,td + j±

s2dsr,td + j±
s3dsr,tdg. s2d

The first current termj±
s1dsr ,td is a diffusive current, and mod-

eled as[14,15]

j±
s1dsr,td = −

D

kBT
r±sr,td =

dF†r+,r−‡

dr±sr,td
, s3d

D=kBT/g being the phenomenological diffusion coefficient.
Ffr+,r−g, the free energy cost for creating weak inhomoge-

FIG. 1. (Color online) Simulation snapshots for a fixed external
force Fp=70 and for densities(a) r0s2=0.07, (b) r0s2=0.20, and
(c) r0s2=0.70. The driving force is acting iny direction as indi-
cated by the arrow. The particle and box sizes in this figure are
scaled to the same lengths for a better comparison of the structure.
The box lengths used are(a) ,=84.5s, (b) ,=50s, and (c) ,
=26.7s.

FIG. 2. The critical forceFc for lane formation versus density
r0. Brownian dynamics simulation results(circles) are compared to
the dynamic density functional theory(squares). Solid and dashed
lines are guide to the eye and suggest the phase boundary between
states of “no lanes” and “lane formation.” The asterisks mark states
of chosen densities(a) r0s2=0.07, (b) r0s2=0.20, and(c) r0s2

=0.70 and a fixed forceFp=70 (indicated by the arrow), for which
snapshots are shown in Fig. 1.
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neities around a homogeneous state, is given by[16]

Ffr+,r−g
kBT

= o
k=±
E d2rrksrdlogf2rksrd/r0g

−
1

2
E d2rd2r8csur − r8udDrsrdDrsr8d s4d

with Drsrd=r+srd+r−srd−r0 andcsrd the fluid direct corre-
lation function, determined byVsrd [16]. j±

s2dsr ,td, is induced
by the driving field in they direction. In a completely de-
mixed state, the field induces a Brownian drift velocity of
vd=F /g in they direction, while in a completely mixed state
the flow is reduced due to mutual collisions between oppo-
sitely driven particles. These effects can be incorporated via

j±
s2dsr,td = 7 eY

2vd

r0
f1 + ar±sr,tdsr0/2 − r±sr,tdd

− br+sr,tdr−sr,tdg, s5d

where a is a phenomenological parameter to take care of
the appropriate physical dimensions of the current andb
takes care of the mutual collision effects.j±

s3dsr ,td is also
induced by the external drive but in thex direction transverse
to the drive. Brownian collisions between + and − particles
having repulsive interaction will cause a displacement
perpendicular to the field. The leading term contributing
to j±

s3dsr ,td is the gradient in the density difference field[14].

j±
s3dsr ,td should scale with the total collision cross-section

experienced per unit time. Lets0 denote a typical range of
the interactionVsrd needed to perform a collision andas

=r0
−1/2 the mean interparticle separation. The number of col-

lision event will be given by the number of particles of the
two species in an area ofass0. The typical time of collision
is as/vd, so that the number of collision per unit time is
svd/asdr+sr ,tds0dr−sr ,tdsass0d2. The cross section of an indi-
vidual collision is given byps0

2/2, where the factor of half
takes care of the fact that the scattering is anisotropic due to
the drive, only half portion of a particle being exposed to
collision. Consequently, we find

j±
s3dsr,td = ± exps0

2/2
vd

as
r+sr,tds0dr−sr,tdsass0d2

3
]

] x
fr+sr,td − r−sr,tdg. s6d

All currents remain unchanged under the interchange of the
species, namely,r+sr ,td↔r−sr ,td and F→−F, which satis-
fies the symmetry requirement.s0 has been estimated by an
effective hard core diameter from the Barker-Henderson per-
turbation theory,s0=e0

` h1−expf−Vsrd /kBTgjdr.
The dispersion relations for frequencyv with wave vector

q=sqx,qyd, obtained from the linearized equations of motion
[14] show that real frequencies, as required for the steady
state bifurcations, can result forqy=0, independent ofa and
b. The unstable wave vector in they direction beingqy=0
indicate structural homogeneity in they direction parallel to
the drive as observed in the simulations. Two possible dis-
persion relations forqy=0 are

v1
p = 2Fpqx

2 − f1 − r0c̃sqx,qy = 0dgqx
2 s7d

and

v2
p = − f1 − r0c̃sqx,qy = 0dgqx

2, s8d

wherev1,2
p =v1,2s0

2/D denotes the dimensionless frequency
and c̃sqd is the Fourier transform ofcsrd. v2

p remains nega-
tive for all qx, since 1−r0c̃sqd, being the inverse of the static
structure factor, is a positive definite quantity[16]. v1

p

changes sign, indicating the steady state bifurcation of a ho-
mogeneous state to an inhomogeneous state[17]. q0 where
v1

p has a positive maximum as a function ofqx, will domi-
nate the growth of the inhomogeneous phase. We approxi-
matecsrd by that of an effective hard disk fluid with effective
diameters0 for which analytical expressions are known[18].
We calculate numericallyv1

p and locate graphically the insta-
bility point as well asq0 [14]. For a givenr0, v1

p remains
negative for allqx indicating the stability of the homoge-
neous phase for very lowFp. The homogeneous phase be-
comes unstable forFp.Fc to density perturbations withqx
over a band about the maximum atqx=q0. Note that a state
with density modes havingqy=0 but a finiteqx=q0 indicates
a lane phase as observed in the steady states of the Brownian
dynamics (BD) simulations. The stability of the different
phases has been shown over theFp vs r0 plane in Fig. 2,Fc

p

being marked by the squares for chosen densities. The most
striking feature of the stability diagram is the reentrant ho-
mogeneous phase as one increases the density for a fixed
external force. Physically, the diffusive thermodynamic
current tries to avoid any +/− interface via entropy of mix-
ing, while the currentj±

s3dsr ,td amplifies particle segregation
in x direction via collisions induced by the drive. The diffu-
sion becomes slower with increasingr0 that reduces the ten-
dency of mixing. This requires stronger drive to ensure the
collision between two different species to have an appre-
ciable j±

s3dsr ,td contribution. This is what seen in the larger0

regime whereFc increases withr0. However, the collision
frequency itself goes down in the lowr0 regime, and one
needs stronger drive to counterbalance the fast diffusing cur-
rent, leading to the reentrant behavior seen in Fig. 2.

In conclusion, we predict a reentrance effect in binary
mixtures of oppositely driven colloids for increasing density.
At fixed driving strength, there is a state with no lanes at
small densities. This transforms into a state with lanes for
intermediate densities and then there is reentrance of the
state with no lanes. The reentrance behavior has a simple
intuitive interpretation and should therefore be robust with
respect to a variation of details of the interaction. We expect
that it will show up also for asymmetric mixtures, in three
spatial dimensions, and for different particle dynamics than
the simple Brownian dynamics assumed in our model. In
fact, recent simulations[19] which include hydrodynamic
interactions have revealed that the laning transition itself is
indeed stable when explicit hydrodynamic interactions are
added.

The reentrance behavior should be verifiable in experi-
ments. We think that the most promising candidates for an
experimental test are binary mixtures of highly charged col-
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loidal suspensions in a gravitational field. Recent progress
has been made which highly deionized suspensions[20]
which can be subject to sedimentation at different colloidal
densities. Another possibility are mixtures of colloids and
polymers under gravity[21]. The reentrance effect may fi-
nally provide also a quantitative framework to explain differ-
ent states of pedestrian dynamics in pedestrian zones for var-
ied population density[22]: The low-density state without

lanes is typical for low populations. For intermediate densi-
ties, pedestrians form lanes, but for even higher densities the
lanes are broken again and there is a crossover to panic dy-
namics.
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